A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms

成果类型:
Article
署名作者:
Li, Wenyue; Wang, Xiaozhao; Mao, Renwei; Li, Dong; Meng, Hongxu; Zhang, Ru; Fang, Jinghua; Kang, Zhengzhong; Wu, Boxuan; Ma, Weiwei; Yao, Xudong; Xie, Chang; Li, Rui; Wang, Jin; Chen, Xiao; Pan, Xihao; Chen, Weiqiu; Duan, Wangping; Gao, Huajian; Ouyang, Hongwei
署名单位:
Zhejiang University; Liangzhu Laboratory; Zhejiang University; Zhejiang University; Zhejiang University; Zhejiang University; Nanyang Technological University; Zhejiang University; Zhejiang University; Shanxi Medical University; Tsinghua University
刊物名称:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN/ISSBN:
0027-11524
DOI:
10.1073/pnas.2416085122
发表日期:
2025-01-28
关键词:
calcium-phosphate bone attachment microstructure mineralization calcification cartilage DESIGN zones
摘要:
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale- graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan. Here, we investigated the multiscale graded mineralization structure and their strengthening mechanisms within the 30- micron soft-hard interface at the root-bone junction. This graded interface, featuring interdigitated structures and an exponential increase in modulus, undergoes a phase transition from amorphous calcium phosphate (ACP) to gradually matured hydroxyapatite (HAP) crystals, regulated by location- specific distributed biomolecules. In coordination with collagen fibril deformation and reorientation, the in situ tensile mechanical experiments and molecular dynamic simulations revealed that immature ACP particles debond from the collagenous matrix and translocate to dissipate energy, while the progressively matured HAP crystals with high stiffness pins propagating cracks, thereby enhancing both the toughness and fatigue resistance of the interface. To further validate our findings, we built biomimetic soft-hard interfaces with phase- transforming mineralization which exhibited boosted strength, toughness, and interface adhesion. This interface model is generalizable to other material joints and provides a blueprint for developing robust soft-hard composites across various applications.