A phase transition in diffusion models reveals the hierarchical nature of data
成果类型:
Article
署名作者:
Sclocchi, Antonio; Favero, Alessandro; Wyart, Matthieu
署名单位:
Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne; Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne
刊物名称:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN/ISSBN:
0027-8789
DOI:
10.1073/pnas.2408799121
发表日期:
2025-01-07
关键词:
摘要:
Understanding the structure of real data is paramount in advancing modern deep- learning methodologies. Natural data such as images are believed to be composed of features organized in a hierarchical and combinatorial manner, which neural networks capture during learning. Recent advancements show that diffusion models can generate high-quality images, hinting at their ability to capture this underlying compositional structure. We study this phenomenon in a hierarchical generative model of data. We find that the backward diffusion process acting after a time t is governed by a phase transition at some threshold time, where the probability of reconstructing high-level features, like the class of an image, suddenly drops. Instead, the reconstruction of lowlevel features, such as specific details of an image, evolves smoothly across the whole diffusion process. This result implies that at times beyond the transition, the class has changed, but the generated sample may still be composed of low-level elements of the initial image. We validate these theoretical insights through numerical experiments on class-unconditional ImageNet diffusion models. Our analysis characterizes the relationship between time and scale in diffusion models and puts forward generative models as powerful tools to model combinatorial data properties.
来源URL: