作者:JUDGE, CM
作者单位:Institute for Advanced Study - USA
摘要:The perturbation theory of the Laplace spectrum of hyperbolic surfaces with conical singularities belonging to a fixed conformal class is developed. As an application, it is shown that the generic such surface with cusps has no Maass cusp forms ( L(2) eigenfunctions) under specific eigenvalue multiplicity assumptions. It is also shown that eigenvalues depend monotonically on the cone angles. From this, one obtains Neumann eigenvalue monotonicity for geodesic triangles in H-2 and a lower bound ...