-
作者:Rabinowitz, D; Jewell, NP
作者单位:University of California System; University of California Berkeley
摘要:Data from settings in which an initiating event and a subsequent event occur in sequence are called doubly censored current status data if the time of neither event is observed directly, but instead it is determined at a random monitoring time whether either the initiating or subsequent event has yet occurred. This paper is concerned with using doubly censored current status data to estimate the regression coefficient in an accelerated failure time model for the length of time between the init...
-
作者:Cowling, A; Hall, P
作者单位:Australian National University
摘要:We suggest a method for boundary correcting kernel density estimators, based on generating pseudodata beyond the extremities of the density's support. The estimator produced in this way enjoys optimal orders of bias and variance right up to the ends of the support, and it may be used with kernels of arbitrary order. Our method is considerably more adaptive than the common data reflection approach, which is not really appropriate for kernels of order 2 or more since it does not adequately corre...
-
作者:Yee, TW; Wild, CJ
摘要:Vector smoothing is used to extend the class of generalized additive models in a very natural way to include a class of multivariate regression models. The resulting models are called 'vector generalized additive models'. The class of models for which the methodology gives generalized additive extensions includes the multiple logistic regression model for nominal responses, the continuation ratio model and the proportional and nonproportional odds models for ordinal responses, and the bivariat...