Global well-posedness of the KP-I initial-value problem in the energy space

成果类型:
Article
署名作者:
Ionescu, A. D.; Kenig, C. E.; Tataru, D.
署名单位:
University of Wisconsin System; University of Wisconsin Madison; University of Chicago; University of California System; University of California Berkeley
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-008-0115-0
发表日期:
2008
页码:
265-304
关键词:
korteweg-devries equation solitary waves asymptotic stability instability EXISTENCE solitons
摘要:
We prove that the KP-I initial-value problem {partial derivative(t)u + partial derivative(3)(x)u - partial derivative(-1)(x)partial derivative(2)(y)u + partial derivative(x)(u(2)/2) = 0 on R-x,y(2) x R-t; u(0) =phi is globally well-posed in the energy space E-1(R-2) = {phi : R-2 -> R : parallel to phi parallel to(E1(R2)) approximate to parallel to phi parallel to(L2) + parallel to partial derivative(x)phi parallel to(L2) + parallel to partial derivative(-1)(x)partial derivative(y)phi parallel to(L2) < infinity}.