Non-commutative desingularization of determinantal varieties I
成果类型:
Article
署名作者:
Buchweitz, Ragnar-Olaf; Leuschke, Graham J.; Van den Bergh, Michel
署名单位:
Syracuse University; University of Toronto; University Toronto Scarborough; Hasselt University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-010-0258-7
发表日期:
2010
页码:
47-115
关键词:
modules
摘要:
We show that determinantal varieties defined by maximal minors of a generic matrix have a non-commutative desingularization, in that we construct a maximal Cohen-Macaulay module over such a variety whose endomorphism ring is Cohen-Macaulay and has finite global dimension. In the case of the determinant of a square matrix, this gives a non-commutative crepant resolution.