Classification With Unstructured Predictors and an Application to Sentiment Analysis
成果类型:
Article
署名作者:
Wang, Junhui; Shen, Xiaotong; Sun, Yiwen; Qu, Annie
署名单位:
University of Illinois System; University of Illinois Chicago; University of Illinois Chicago Hospital; City University of Hong Kong; University of Minnesota System; University of Minnesota Twin Cities; University of Illinois System; University of Illinois Urbana-Champaign
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2015.1089771
发表日期:
2016
页码:
1242-1253
关键词:
rates
摘要:
Unstructured data refer to information that lacks certain structures and cannot be organized in a predefined fashion. Unstructured data often involve words, texts, graphs, objects, or multimedia types of files that are difficult to process and analyze with traditional computational tools and statistical methods. This work explores ordinal classification for unstructured predictors with ordered class categories, where imprecise information concerning strengths of association between predictors is available for predicting class labels. However, imprecise information here is expressed in terms of a directed graph, with each node representing a predictor and a directed edge containing pairwise strengths of association between two nodes. One of the targeted applications for unstructured data arises from sentiment analysis, which identifies and extracts the relevant content or opinion of a document concerning a specific event of interest. We integrate the imprecise predictor relations into linear relational constraints over classification function coefficients, where large margin ordinal classifiers are introduced, subject to many quadratically linear constraints. The proposed classifiers are then applied in sentiment analysis using binary word predictors. Computationally, we implement ordinal support vector machines and psi-learning through a scalable quadratic programming package based on sparse word representations. Theoretically, we show that using relationships among unstructured predictors improves prediction accuracy of classification significantly. We illustrate an application for sentiment analysis using consumer text reviews and movie review data. Supplementary materials for this article are available online.