A Model of Text for Experimentation in the Social Sciences
成果类型:
Article
署名作者:
Roberts, Margaret E.; Stewart, Brandon M.; Airoldi, Edoardo M.
署名单位:
University of California System; University of California San Diego; Princeton University; Harvard University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2016.1141684
发表日期:
2016
页码:
988-1003
关键词:
variational inference
maximum-likelihood
TOPIC MODEL
CLASSIFICATION
CHINA
摘要:
Statistical models of text have become increasingly popular in statistics and computer science as a method of exploring large document collections. Social scientists often want to move beyond exploration, to measurement and experimentation, and make inference about social and political processes that drive discourse and content. In this article, we develop a model of text data that supports this type of substantive research. Our approach is to posit a hierarchical mixed membership model for analyzing topical content of documents, in which mixing weights are parameterized by observed covariates. In this model, topical prevalence and topical content are specified as a simple generalized linear model on an arbitrary number of document level covariates, such as news source and time of release, enabling researchers to introduce elements of the experimental design that informed document collection into the model, within a generally applicable framework. We demonstrate the proposed methodology by analyzing a collection of news reports about China, where we allow the prevalence of topics to evolve over time and vary across newswire services. Our methods quantify the effect of news wire source on both the frequency and nature of topic coverage. Supplementary materials for this article are available online.