Optimal Designs of Two-Phase Studies

成果类型:
Article
署名作者:
Tao, Ran; Zeng, Donglin; Lin, Dan-Yu
署名单位:
Vanderbilt University; Vanderbilt University; University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2019.1671200
发表日期:
2020
页码:
1946-1959
关键词:
regression-models wilms-tumor logistic-regression case-cohort Semiparametric Inference efficient estimation FAILURE exposure
摘要:
The two-phase design is a cost-effective sampling strategy to evaluate the effects of covariates on an outcome when certain covariates are too expensive to be measured on all study subjects. Under such a design, the outcome and inexpensive covariates are measured on all subjects in the first phase and the first-phase information is used to select subjects for measurements of expensive covariates in the second phase. Previous research on two-phase studies has focused largely on the inference procedures rather than the design aspects. We investigate the design efficiency of the two-phase study, as measured by the semiparametric efficiency bound for estimating the regression coefficients of expensive covariates. We consider general two-phase studies, where the outcome variable can be continuous, discrete, or censored, and the second-phase sampling can depend on the first-phase data in any manner. We develop optimal or approximately optimal two-phase designs, which can be substantially more efficient than the existing designs. We demonstrate the improvements of the new designs over the existing ones through extensive simulation studies and two large medical studies. Supplementary materials for this article are available online.