Stochastic Tree Search for Estimating Optimal Dynamic Treatment Regimes
成果类型:
Article
署名作者:
Sun, Yilun; Wang, Lu
署名单位:
University of Michigan System; University of Michigan; University of Michigan System; University of Michigan
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2020.1819294
发表日期:
2020
页码:
421-432
关键词:
bayesian cart
randomized-trial
CLASSIFICATION
models
摘要:
A dynamic treatment regime (DTR) is a sequence of decision rules that adapt to the time-varying states of an individual. Black-box learning methods have shown great potential in predicting the optimal treatments; however, the resulting DTRs lack interpretability, which is of paramount importance for medical experts to understand and implement. We present a stochastic tree-based reinforcement learning (ST-RL) method for estimating optimal DTRs in a multistage multitreatment setting with data from either randomized trials or observational studies. At each stage, ST-RL constructs a decision tree by first modeling the mean of counterfactual outcomes via nonparametric regression models, and then stochastically searching for the optimal tree-structured decision rule using a Markov chain Monte Carlo algorithm. We implement the proposed method in a backward inductive fashion through multiple decision stages. The proposed ST-RL delivers optimal DTRs with better interpretability and contributes to the existing literature in its non-greedy policy search. Additionally, ST-RL demonstrates stable and outstanding performances even with a large number of covariates, which is especially appealing when data are from large observational studies. We illustrate the performance of ST-RL through simulation studies, and also a real data application using esophageal cancer data collected from 1170 patients at MD Anderson Cancer Center from 1998 to 2012. for this article are available online.