Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity

成果类型:
Article
署名作者:
Ando, Tomohiro; Bai, Jushan
署名单位:
University of Melbourne; Columbia University; Nankai University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2018.1543598
发表日期:
2020
页码:
266-279
关键词:
regression-models principal components variable selection large n number inference dependence returns CURVES common
摘要:
This article introduces a new procedure for analyzing the quantile co-movement of a large number of financial time series based on a large-scale panel data model with factor structures. The proposed method attempts to capture the unobservable heterogeneity of each of the financial time series based on sensitivity to explanatory variables and to the unobservable factor structure. In our model, the dimension of the common factor structure varies across quantiles, and the explanatory variables is allowed to depend on the factor structure. The proposed method allows for both cross-sectional and serial dependence, and heteroscedasticity, which are common in financial markets. We propose new estimation procedures for both frequentist and Bayesian frameworks. Consistency and asymptotic normality of the proposed estimator are established. We also propose a new model selection criterion for determining the number of common factors together with theoretical support. We apply the method to analyze the returns for over 6000 international stocks from over 60 countries during the subprime crisis, European sovereign debt crisis, and subsequent period. The empirical analysis indicates that the common factor structure varies across quantiles. We find that the common factors for the quantiles and the common factors for the mean are different. for this article are available online.