A Bayesian Approach to Multistate Hidden Markov Models: Application to Dementia Progression

成果类型:
Article
署名作者:
Williams, Jonathan P.; Storlie, Curtis B.; Therneau, Terry M.; Jack, Clifford R., Jr.; Hannig, Jan
署名单位:
Mayo Clinic; University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2019.1594831
发表日期:
2020
页码:
16-31
关键词:
VARIABLE SELECTION RISK
摘要:
People are living longer than ever before, and with this arises new complications and challenges for humanity. Among the most pressing of these challenges is of understanding the role of aging in the development of dementia. This article is motivated by the Mayo Clinic Study of Aging data for 4742 subjects since 2004, and how it can be used to draw inference on the role of aging in the development of dementia. We construct a hidden Markov model (HMM) to represent progression of dementia from states associated with the buildup of amyloid plaque in the brain, and the loss of cortical thickness. A hierarchical Bayesian approach is taken to estimate the parameters of the HMM with a truly time-inhomogeneous infinitesimal generator matrix, and response functions of the continuous-valued biomarker measurements are cut-point agnostic. A Bayesian approach with these features could be useful in many disease progression models. Additionally, an approach is illustrated for correcting a common bias in delayed enrollment studies, in which some or all subjects are not observed at baseline. Standard software is incapable of accounting for this critical feature, so code to perform the estimation of the model described below is made available online. Code submitted with this article was checked by an Associate Editor for Reproducibility and is available as an online supplement.