Bayesian Inference for Sequential Treatments Under Latent Sequential Ignorability

成果类型:
Article
署名作者:
Ricciardi, Federico; Mattei, Alessandra; Mealli, Fabrizia
署名单位:
University of London; University College London; University of Florence
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2019.1623039
发表日期:
2020
页码:
1498-1517
关键词:
Causal Inference principal stratification sensitivity-analysis models noncompliance
摘要:
We focus on causal inference for longitudinal treatments, where units are assigned to treatments at multiple time points, aiming to assess the effect of different treatment sequences on an outcome observed at a final point. A common assumption in similar studies is sequential ignorability (SI): treatment assignment at each time point is assumed independent of future potential outcomes given past observed outcomes and covariates. SI is questionable when treatment participation depends on individual choices, and treatment assignment may depend on unobservable quantities associated with future outcomes. We rely on principal stratification to formulate a relaxed version of SI: latent sequential ignorability (LSI) assumes that treatment assignment is conditionally independent on future potential outcomes given past treatments, covariates, and principal stratum membership, a latent variable defined by the joint value of observed and missing intermediate outcomes. We evaluate SI and LSI, using theoretical arguments and simulation studies to investigate the performance of the two assumptions when one holds and inference is conducted under both. Simulations show that when SI does not hold, inference performed under SI leads to misleading conclusions. Conversely, LSI generally leads to correct posterior distributions, irrespective of which assumption holds.
来源URL: