Sensitivity Analysis via the Proportion of Unmeasured Confounding

成果类型:
Article
署名作者:
Bonvini, Matteo; Kennedy, Edward H.
署名单位:
Carnegie Mellon University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2020.1864382
发表日期:
2022
页码:
1540-1550
关键词:
摘要:
In observational studies, identification of ATEs is generally achieved by assuming that the correct set of confounders has been measured and properly included in the relevant models. Because this assumption is both strong and untestable, a sensitivity analysis should be performed. Common approaches include modeling the bias directly or varying the propensity scores to probe the effects of a potential unmeasured confounder. In this article, we take a novel approach whereby the sensitivity parameter is the proportion of unmeasured confounding: the proportion of units for whom the treatment is not as good as randomized even after conditioning on the observed covariates. We consider different assumptions on the probability of a unit being unconfounded. In each case, we derive sharp bounds on the average treatment effect as a function of the sensitivity parameter and propose nonparametric estimators that allow flexible covariate adjustment. We also introduce a one-number summary of a study's robustness to the number of confounded units. Finally, we explore finite-sample properties via simulation, and apply the methods to an observational database used to assess the effects of right heart catheterization. for this article are available online.