SPARSITY WITH SIGN-COHERENT GROUPS OF VARIABLES VIA THE COOPERATIVE-LASSO

成果类型:
Article
署名作者:
Chiquet, Julien; Grandvalet, Yves; Charbonnier, Camille
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris Saclay; Universite de Technologie de Compiegne
刊物名称:
ANNALS OF APPLIED STATISTICS
ISSN/ISSBN:
1932-6157
DOI:
10.1214/11-AOAS520
发表日期:
2012
页码:
795-830
关键词:
penalized regression penalties shrinkage algorithm selection
摘要:
We consider the problems of estimation and selection of parameters endowed with a known group structure, when the groups are assumed to be sign-coherent, that is, gathering either nonnegative, nonpositive or null parameters. To tackle this problem, we propose the cooperative-Lasso penalty. We derive the optimality conditions defining the cooperative-Lasso estimate for generalized linear models, and propose an efficient active set algorithm suited to high-dimensional problems. We study the asymptotic consistency of the estimator in the linear regression setup and derive its irrepresentable conditions, which are milder than the ones of the group-Lasso regarding the matching of groups with the sparsity pattern of the true parameters. We also address the problem of model selection in linear regression by deriving an approximation of the degrees of freedom of the cooperative-Lasso estimator. Simulations comparing the proposed estimator to the group and sparse group-Lasso comply with our theoretical results, showing consistent improvements in support recovery for sign-coherent groups. We finally propose two examples illustrating the wide applicability of the cooperative-Lasso: first to the processing of ordinal variables, where the penalty acts as a monotonicity prior; second to the processing of genomic data, where the set of differentially expressed probes is enriched by incorporating all the probes of the microarray that are related to the corresponding genes.
来源URL: