Enhancing information retrieval through statistical natural language processing: A study of collocation indexing
成果类型:
Article
署名作者:
Arazy, Ofer; Woo, Carson
署名单位:
University of Alberta; University of British Columbia
刊物名称:
MIS QUARTERLY
ISSN/ISSBN:
0276-7783
发表日期:
2007
页码:
525-546
关键词:
cooccurrence
摘要:
In this paper, we provide preliminary evidence for the usefulness of statistical natural language processing (NLP) techniques, and specifically of collocation indexing, for IR in general settings. We investigate the effect of three key parameters on collocation indexing performance: directionality, distance, and weighting. We build on previous work in IR to (1) advance our knowledge of key design elements for collocation indexing, (2) demonstrate gains in retrieval precision from the use of statistical NLP for general-settings IR, and, finally, (3) provide practitioners with a useful cost benefit analysis of the methods under investigation. Although the management of information assets-specifically, of text documents that make up 80 percent of these assets an provide organizations with a competitive advantage, the ability of information retrieval (IR) systems to deliver relevant information to users is severely hampered by the difficulty of disambiguating natural language. The word ambiguity problem is addressed with moderate success in restricted settings, but continues to be the main challenge for general settings, characterized by large, heterogeneous document collections.