Cost-Sensitive Learning via Priority Sampling to Improve the Return on Marketing and CRM Investment
成果类型:
Article
署名作者:
Cui, Geng; Wong, Man Leung; Wan, Xiang
署名单位:
Lingnan University
刊物名称:
JOURNAL OF MANAGEMENT INFORMATION SYSTEMS
ISSN/ISSBN:
0742-1222
DOI:
10.2753/MIS0742-1222290110
发表日期:
2012
页码:
341-373
关键词:
models
摘要:
Because of the unbalanced class and skewed profit distribution in customer purchase data, the unknown and variant costs of false negative errors are a common problem for predicting the high-value customers in marketing operations. Incorporating cost-sensitive learning into forecasting models can improve the return on investment under resource constraint. This study proposes a cost-sensitive learning algorithm via priority sampling that gives greater weight to the high-value customers. We apply the method to three data sets and compare its performance with that of competing solutions. The results suggest that priority sampling compares favorably with the alternative methods in augmenting profitability. The learning algorithm can be implemented in decision support systems to assist marketing operations and to strengthen the strategic competitiveness of organizations.