Advanced Customer Analytics: Strategic Value Through Integration of Relationship-Oriented Big Data

成果类型:
Article
署名作者:
Kitchens, Brent; Dobolyi, David; Li, Jingjing; Abbasi, Ahmed
署名单位:
University of Virginia; University of Virginia; University of Virginia
刊物名称:
JOURNAL OF MANAGEMENT INFORMATION SYSTEMS
ISSN/ISSBN:
0742-1222
DOI:
10.1080/07421222.2018.1451957
发表日期:
2018
页码:
540-574
关键词:
information-technology predictive analytics churn prediction systems management satisfaction FRAMEWORK agility engagement CAPABILITY
摘要:
As more firms adopt big data analytics to better understand their customers and differentiate their offerings from competitors, it becomes increasingly difficult to generate strategic value from isolated and unfocused ad hoc initiatives. To attain sustainable competitive advantage from big data, firms must achieve agility in combining rich data across the organization to deploy analytics that sense and respond to customers in a dynamic environment. A key challenge in achieving this agility lies in the identification, collection, and integration of data across functional silos both within and outside the organization. Because it is infeasible to systematically integrate all available data, managers need guidance in finding which data can provide valuable and actionable insights about customers. Leveraging relationship marketing theory, we develop a framework for identifying and evaluating various sources of big data in order to create a value-justified data infrastructure that enables focused and agile deployment of advanced customer analytics. Such analytics move beyond siloed transactional customer analytics approaches of the past and incorporate a variety of rich, relationship-oriented constructs to provide actionable and valuable insights. We develop a customized kernel-based learning method to take advantage of these rich constructs and instantiate the framework in a novel prototype system that accurately predicts a variety of customer behaviors in a challenging environment, demonstrating the framework's ability to drive significant value.