Salience Bias in Crowdsourcing Contests

成果类型:
Article
署名作者:
Lee, Ho Cheung Brian; Ba, Sulin; Li, Xinxin; Stallaert, Jan
署名单位:
University of Massachusetts System; University of Massachusetts Lowell; University of Connecticut
刊物名称:
INFORMATION SYSTEMS RESEARCH
ISSN/ISSBN:
1047-7047
DOI:
10.1287/isre.2018.0775
发表日期:
2018
页码:
401-418
关键词:
innovation contests market experience field experiment PRODUCT IDEAS COMPETITION determinants uncertainty JUDGMENT success LEVEL
摘要:
Crowdsourcing relies on online platforms to connect a community of users to perform specific tasks. However, without appropriate control, the behavior of the online community might not align with the platform's designed objective, which can lead to an inferior platform performance. This paper investigates how the feedback information on a crowdsourcing platform and systematic bias of crowdsourcing workers can affect crowdsourcing outcomes. Specifically, using archival data from the online crowdsourcing platform Kaggle, combined with survey data from actual Kaggle contest participants, we examine the role of a systematic bias, namely, the salience bias, in influencing the performance of the crowdsourcing workers and how the number of crowdsourcing workers moderates the impact of the salience bias on the outcomes of contests. Our results suggest that the salience bias influences the performance of contestants, including the winners of the contests. Furthermore, the number of participating contestants may attenuate or amplify the impact of the salience bias on the outcomes of contests, depending on the effort required to complete the tasks. Our results have critical implications for crowdsourcing firms and platform designers.
来源URL: