Diversity Preference-Aware Link Recommendation for Online Social Networks

成果类型:
Article
署名作者:
Yin, Kexin; Fang, Xiao; Chen, Bintong; Sheng, Olivia R. Liu
署名单位:
JP Morgan Chase & Company; University of Delaware; University of Delaware; University of Delaware; Utah System of Higher Education; University of Utah
刊物名称:
INFORMATION SYSTEMS RESEARCH
ISSN/ISSBN:
1047-7047
DOI:
10.1287/isre.2022.1174
发表日期:
2023
页码:
1398-1414
关键词:
personality prediction SUM
摘要:
Link recommendation, which recommends links to connect unlinked online social network users, is a fundamental social network analytics problem with ample business implications. Existing link recommendation methods tend to recommend similar friends to a user but overlook the user's diversity preference, although social psychology theories suggest the criticality of diversity preference to link recommendation performance. In recommender systems, a field related to link recommendation, a number of diversification methods have been proposed to improve the diversity of recommended items. Nevertheless, diversity preference is distinct from diversity studied by diversification methods. To address these research gaps, we define and operationalize the concept of diversity preference for link recommendation and propose a new link recommendation problem: the diversity preference-aware link recommendation problem. We then analyze key properties of the new link recommendation problem and develop a novel link recommendation method to solve the problem. Using two large-scale online social network data sets, we conduct extensive empirical evaluations to demonstrate the superior performance of our method over representative diversification methods adapted for link recommendation and state-of-the-art link recommendation methods.
来源URL: