Robust Combination Testing: Methods and Application to COVID-19 Detection
成果类型:
Article; Early Access
署名作者:
Jain, Sanjay; Jonasson, Jonas Oddur; Pauphilet, Jean; Ramdas, Kamalini
署名单位:
University of Oxford; Massachusetts Institute of Technology (MIT); University of London; London Business School
刊物名称:
MANAGEMENT SCIENCE
ISSN/ISSBN:
0025-1909
DOI:
10.1287/mnsc.2023.4826
发表日期:
2023
关键词:
diagnostic operations
combination testing
Knapsack
robust optimization
healthcare analytics
摘要:
Simple and affordable testing tools are often not accurate enough to be operationally relevant. For coronavirus disease 2019 (COVID-19) detection, rapid point-of-care tests are cheap and provide results in minutes, but they largely fail policy makers' accuracy requirements. We propose an analytical methodology, based on robust optimization, that identifies optimal combinations of results from cheap tests for increased predictive accuracy. This methodological tool allows policy makers to credibly quantify the benefits from combination testing and thus, break the trade-off between cost and accuracy. Our methodology is robust to noisy and partially missing input data and incorporates operational constraints-relevant considerations in practice. We apply our methodology to two data sets containing individual-level results of multiple COVID-19 rapid antibody and antigen tests, respectively, to generate Pareto-dominating receiver operating characteristic curves. We find that combining only three rapid tests increases out-of-sample area under the curve by 4% (6%) compared with the best-performing individual test for antibody (antigen) detection. We also find that a policy maker who requires a specificity of at least 0.95 can improve sensitivity by 8% and 2% for antibody and antigen testing, respectively, relative to available combination testing heuristics. Our numerical analysis demonstrates that robust optimization is a powerful tool to avoid overfitting, accommodate missing data, and improve out-of-sample performance. Based on our analytical and empirical results, policy makers should consider approving and deploying a curated combination of cheap point-of-care tests in settings where gold standard tests are too expensive or too slow.
来源URL: