Randomized Consensus-Based Distributed Kalman Filtering Over Wireless Sensor Networks

成果类型:
Article
署名作者:
Qin, Jiahu; Wang, Jie; Shi, Ling; Kang, Yu
署名单位:
Chinese Academy of Sciences; University of Science & Technology of China, CAS; Hong Kong University of Science & Technology; Chinese Academy of Sciences; University of Science & Technology of China, CAS; Chinese Academy of Sciences; University of Science & Technology of China, CAS; Chinese Academy of Sciences
刊物名称:
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN/ISSBN:
0018-9286
DOI:
10.1109/TAC.2020.3026017
发表日期:
2021
页码:
3794-3801
关键词:
Kalman filters wireless sensor networks Heuristic algorithms estimation Network topology CONVERGENCE Covariance matrices distributed filtering energy constraint randomized gossip algorithm wireless sensor network (WSN)
摘要:
This article is concerned with developing a novel distributed Kalman filtering algorithm over wireless sensor networks based on randomized consensus strategy. Compared with centralized algorithm, distributed filtering techniques require less computation per sensor and lead to more robust estimation since they simply use the information from the neighboring nodes in the network. However, poor local sensor estimation caused by limited observability and network topology changes, which interfere the global consensus, are challenging issues. Motivated by this observation, we propose a novel randomized gossip based distributed Kalman filtering algorithm. Information exchange and computation in the proposed algorithm can be carried out in an arbitrarily connected network of sensors. In addition, the computational burden can be distributed for a sensor, which communicates with a stochastically selected neighbor at each clock step under schemes of gossip algorithm. In this case, the error covariance matrix changes stochastically at every clock step; thus, the convergence is considered in a probabilistic sense. We provide the mean square convergence analysis of the proposed algorithm. Under a sufficient condition, we show that the proposed algorithm is quite appealing as it achieves better mean square error performance theoretically than the noncooperative decentralized Kalman filtering algorithm. Examples and simulations are provided to illustrate the theoretical results.