Robust Output Feedback MPC for LPV Systems Using Interval Observers
成果类型:
Article
署名作者:
dos Reis de Souza, Alex; Efimov, Denis; Raissi, Tarek
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - Institute for Information Sciences & Technologies (INS2I); Universite de Lille; Centrale Lille; ITMO University; heSam Universite; Conservatoire National Arts & Metiers (CNAM)
刊物名称:
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN/ISSBN:
0018-9286
DOI:
10.1109/TAC.2021.3099449
发表日期:
2022
页码:
3188-3195
关键词:
Output feedback
observers
Symmetric matrices
Linear systems
IP networks
uncertainty
estimation error
Output feedback
Predictive control
Robust control
摘要:
This article addresses the problem of robust output feedback model predictive control for discrete-time, constrained, linear parameter-varying systems subject to (bounded) state and measurement disturbances. The vector of scheduling parameters is assumed to be an unmeasurable signal taking values in a given compact set. The proposed controller incorporates an interval observer, that uses the available measurement to update the set-membership estimation of the states, and an interval predictor, used in the prediction step of the model predictive control (MPC) algorithm. The resulting MPC scheme offers guarantees on recursive feasibility, constraint satisfaction, and input-to-state stability in the terminal set. Furthermore, this novel algorithm shows low computation complexity and ease of implementation (similar to conventional MPC schemes).
来源URL: