COMPLEMENTARY INFORMATION AND LEARNING TRAPS
成果类型:
Article
署名作者:
Liang, Annie; Mu, Xiaosheng
刊物名称:
QUARTERLY JOURNAL OF ECONOMICS
ISSN/ISSBN:
0033-5533
DOI:
10.1093/qje/qjz033
发表日期:
2020
页码:
389-448
关键词:
speed
摘要:
We develop a model of social learning from complementary information: short-lived agents sequentially choose from a large set of flexibly correlated information sources for prediction of an unknown state, and information is passed down across periods. Will the community collectively acquire the best kinds of information? Long-run outcomes fall into one of two cases: (i) efficient information aggregation, where the community eventually learns as fast as possible; (ii) learning traps, where the community gets stuck observing suboptimal sources and information aggregation is inefficient. Our main results identify a simple property of the underlying informational complementarities that determines which occurs. In both regimes, we characterize which sources are observed in the long run and how often.
来源URL: