Quantile treatment effects in difference in differences models with panel data

成果类型:
Article
署名作者:
Callaway, Brantly; Li, Tong
署名单位:
University of Mississippi; Vanderbilt University
刊物名称:
QUANTITATIVE ECONOMICS
ISSN/ISSBN:
1759-7323
DOI:
10.3982/QE935
发表日期:
2019
页码:
1579-1618
关键词:
Quantile Treatment Effect on the Treated Difference in Differences copula panel data propensity score reweighting C14 C20 C23
摘要:
This paper considers identification and estimation of the Quantile Treatment Effect on the Treated (QTT) under a straightforward distributional extension of the most commonly invoked Mean Difference in Differences Assumption used for identifying the Average Treatment Effect on the Treated (ATT). Identification of the QTT is more complicated than the ATT though because it depends on the unknown dependence (or copula) between the change in untreated potential outcomes and the initial level of untreated potential outcomes for the treated group. To address this issue, we introduce a new Copula Stability Assumption that says that the missing dependence is constant over time. Under this assumption and when panel data is available, the missing dependence can be recovered, and the QTT is identified. We use our method to estimate the effect of increasing the minimum wage on quantiles of local labor markets' unemployment rates and find significant heterogeneity.
来源URL: