Thinning by cluster breaking: Active matter and shear flows share thinning mechanisms
成果类型:
Article
署名作者:
Mo, Ruoyang; Xu, Ding; Xu, Ning
署名单位:
Chinese Academy of Sciences; University of Science & Technology of China, CAS; Chinese Academy of Sciences; University of Science & Technology of China, CAS; Chinese Academy of Sciences; University of Science & Technology of China, CAS
刊物名称:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN/ISSBN:
0027-14422
DOI:
10.1073/pnas.2318917121
发表日期:
2024-06-11
关键词:
jamming transition
particles
MODEL
摘要:
Among many unexpected phenomena of active matter is the recently observed superfluid-like thinning (viscosity drop) behavior of bacteria suspensions. Understanding this peculiar self-propelled thinning by active matter is of theoretical and practical importance. Here, we find that, although distinct in driving mechanisms, active matter and shear flows exhibit similar thinning behaviors upon the increase of self -propulsion and shear forces, respectively. Our structural characterizations reveal that they actually share the same cluster -breaking mechanism of thinning. How fast and how shattered the cluster is broken determines the (dis)continuity of the thinning. This explains why adding active particles to Newtonian fluids can cause thinning, in which rotation of active particles play a key role in breaking clusters. Our work proposes a mechanism of self-propelled thinning and further establishes the underlying connections between active matter and shear flows.