Experimental evidence for defect tolerance in Pb- halide perovskites

成果类型:
Article
署名作者:
Jasti, Naga Prathibha; Levine, Igal; Feldman, Vishay (Isai); Hodes, Gary; Aharon, Sigalit; Cahen, David
署名单位:
Bar Ilan University; Bar Ilan University; Weizmann Institute of Science; Helmholtz Association; Helmholtz-Zentrum fuer Materialien und Energie GmbH (HZB); Weizmann Institute of Science; Hebrew University of Jerusalem
刊物名称:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN/ISSBN:
0027-13488
DOI:
10.1073/pnas.2316867121
发表日期:
2024-04-30
关键词:
charge-carrier lifetimes single-crystal semiconductors
摘要:
The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a fact in the field. DT in semiconductors implies that structural defects do not translate to electrical and optical effects (e.g., due to charge trapping), associated with such defects. We present pioneering direct experimental evidence for DT in Pb- HaPs by comparing the structural quality of 2- dimensional (2D), 2D- 3D, and 3D Pb- iodide HaP crystals with their optoelectronic characteristics using high- sensitivity methods. Importantly, we get information from the materials' bulk because we sample at least a few hundred nanometers, up to several micrometers, from the sample's surface, which allows for assessing intrinsic bulk (and not only surface- ) properties of HaPs. The results point to DT in 3D, 2D- 3D, and 2D Pb- HaPs. Overall, our data provide an experimental basis to rationalize DT in Pb- HaPs. These experiments and findings will help the search for and design of materials with real DT.