Lipid- associated macrophages' promotion of fibrosis resolution during MASH regression requires TREM2
成果类型:
Article
署名作者:
Ganguly, Souradipta; Rosenthal, Sara Brin; Ishizuka, Kei; Troutman, Ty D.; Rohm, Theresa, V; Khader, Naser; Aleman-Muench, German; Sano, Yasuyo; Archilei, Sebastiano; Soroosh, Pejman; Olefsky, Jerrold M.; Feldstein, Ariel E.; Kisseleva, Tatiana; Loomba, Rohit; Glass, Christopher K.; Brenner, David A.; Dhar, Debanjan
署名单位:
Novo Nordisk; University of California System; University of California San Diego; Sanford Burnham Prebys Medical Discovery Institute; University of California System; University of California San Diego; University of California System; University of California San Diego; Cincinnati Children's Hospital Medical Center; University System of Ohio; University of Cincinnati; University of California System; University of California San Diego; University of California System; University of California San Diego
刊物名称:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN/ISSBN:
0027-13231
DOI:
10.1073/pnas.2405746121
发表日期:
2024-08-27
关键词:
liver inflammation
expression
phenotype
distinct
injury
cells
nash
摘要:
While macrophage heterogeneity during metabolic dysfunction- associated steatohepatitis (MASH) has been described, the fate of these macrophages during MASH regression is poorly understood. Comparing macrophage heterogeneity during MASH progression vs regression, we identified specific macrophage subpopulations that are critical for MASH/fibrosis resolution. We elucidated the restorative pathways and gene signatures that define regression- associated macrophages and establish the importance of TREM2+ macrophages during MASH regression. Liver- resident Kupffer cells are lost during MASH and are replaced by four distinct monocyte- derived macrophage subpopulations. Trem2 is expressed in two macrophage subpopulations: i) monocyte- derived macrophages occupying the Kupffer cell niche (MoKC) and ii) lipid- associated macrophages (LAM). In regression livers, no new transcriptionally distinct macrophage subpopulation emerged. However, the relative macrophage composition changed during regression compared to MASH. While MoKC was the major macrophage subpopulation during MASH, they decreased during regression. LAM was the dominant macrophage subtype during MASH regression and maintained Trem2 expression. Both MoKC and LAM were enriched in disease- resolving pathways. Absence of TREM2 restricted the emergence of LAMs and formation of hepatic crown- like structures. TREM2+ macrophages are functionally important not only for restricting MASH- fibrosis progression but also for effective regression of inflammation and fibrosis. TREM2+ macrophages are superior collagen degraders. Lack of TREM2+ macrophages also prevented elimination of hepatic steatosis and inactivation of HSC during regression, indicating their significance in metabolic coordination with other cell types in the liver. TREM2 imparts this protective effect through multifactorial mechanisms, including improved phagocytosis, lipid handling, and collagen degradation.