Interferon signaling in the nasal epithelium distinguishes among lethal and common cold coronaviruses and mediates viral clearance
成果类型:
Article
署名作者:
Otter, Clayton J.; Renner, David M.; Fausto, Alejandra; Tan, Li Hui; Cohen, Noam A.; Weiss, Susan R.
署名单位:
University of Pennsylvania; University of Pennsylvania; University of Pennsylvania; Monell Chemical Senses Center
刊物名称:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN/ISSBN:
0027-12597
DOI:
10.1073/pnas.2402540121
发表日期:
2024-05-21
关键词:
upper respiratory-tract
ns1 protein
mers-cov
virus
replication
dsrna
temperature
activation
apoptosis
DEFENSE
摘要:
All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 degrees C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.