Surface atom knockout for the active site exposure of alloy catalyst
成果类型:
Article
署名作者:
Ma, Yi; Yang, Qi; Qi, Jun; Zhang, Yong; Gao, Yuliang; Zeng, You; Jiang, Na; Sun, Ying; Qu, Keqi; Fang, Wenhui; Li, Ying; Lu, Xuejun; Zhi, Chunyi; Qiu, Jieshan
署名单位:
Beijing University of Chemical Technology; Liaoning University; City University of Hong Kong
刊物名称:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN/ISSBN:
0027-12123
DOI:
10.1073/pnas.2319525121
发表日期:
2024-04-09
关键词:
carbon
摘要:
The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron- capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.