Foraging mechanisms in excavate flagellates shed light on the functional ecology of early eukaryotes
成果类型:
Article
署名作者:
Suzuki-Tellier, Sei; Miano, Federica; Asadzadeh, Seyed Saeed; Simpson, Alastair G. B.; Kiorboe, Thomas
署名单位:
Technical University of Denmark; Dalhousie University
刊物名称:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN/ISSBN:
0027-10923
DOI:
10.1073/pnas.2317264121
发表日期:
2024-05-28
关键词:
growth-kinetics
ultrastructure
jakoba
reclinomonas
diversity
EVOLUTION
TREE
摘要:
The phagotrophic flagellates described as typical excavates have been hypothesized to be morphologically similar to the Last Eukaryotic Common Ancestor and understanding the functional ecology of excavates may therefore help shed light on the ecology of these early eukaryotes. Typical excavates are characterized by a posterior flagellum equipped with a vane that beats in a ventral groove. Here, we combined flow visualization and observations of prey capture in representatives of the three clades of excavates with computational fluid dynamic modeling, to understand the functional significance of this cell architecture. We record substantial differences amongst species in the orientation of the vane and the beat plane of the posterior flagellum. Clearance rate magnitudes estimated from flow visualization and modeling are both like that of other similarly sized flagellates. The interaction between a vaned flagellum beating in a confinement is modeled to produce a very efficient feeding current at low energy costs, irrespective of the beat plane and vane orientation and of all other morphological variations. Given this predicted uniformity of function, we suggest that the foraging systems of typical excavates studied here may be good proxies to understand those potentially used by our distant ancestors more than 1 billion years ago.