The effects of bathymetry on the long-term carbon cycle and CCD
成果类型:
Article
署名作者:
Bogumil, Matthew; Mittal, Tushar; Lithgow-Bertelloni, Carolina
署名单位:
University of California System; University of California Los Angeles; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park
刊物名称:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN/ISSBN:
0027-9544
DOI:
10.1073/pnas.2400232121
发表日期:
2024-05-21
关键词:
evolution
ocean
SYSTEM
atmosphere
dioxide
release
摘要:
The shape of the ocean floor (bathymetry) and the overlaying sediments provide the largest carbon sink throughout Earth's history, supporting similar to one to two orders of magnitude more carbon storage than the oceans and atmosphere combined. While accumulation and erosion of these sediments are bathymetry dependent (e.g., due to pressure, temperature, salinity, ion concentration, and available productivity), no systemic study has quantified how global and basin scale bathymetry, controlled by the evolution of tectonics and mantle convection, affects the long-term carbon cycle. We reconstruct bathymetry spanning the last 80 Myr to describe steady-state changes in ocean chemistry within the Earth system model LOSCAR. We find that both bathymetry reconstructions and representative synthetic tests show that ocean alkalinity, calcite saturation state, and the carbonate compensation depth (CCD) are strongly dependent on changes in shallow bathymetry (ocean floor <= 600 m) and on the distribution of the deep marine regions (>1,000 m). Limiting Cenozoic evolution to bathymetry alone leads to predicted CCD variations spanning 500 m, 33 to 50% of the total observed variations in the paleoproxy records. Our results suggest that neglecting bathymetric changes leads to significant misattribution to uncertain carbon cycle parameters (e.g., atmospheric CO2 and water column temperature) and processes (e.g., biological pump efficiency and silicate-carbonate riverine flux). To illustrate this point, we use our updated bathymetry for an Early Paleogene C cycle case study. We obtain carbonate riverine flux estimates that suggest a reversal of the weathering trend with respect to present-day, contrasting with previous studies, but consistent with proxy records and tectonic reconstructions.