Single-photon detection enabled by negative differential conductivity in moiré superlattices

成果类型:
Article
署名作者:
Nowakowski, Krystian; Agarwal, Hitesh; Slizovskiy, Sergey; Smeyers, Robin; Wang, Xueqiao; Zheng, Zhiren; Barrier, Julien; Barcons Ruiz, David; Li, Geng; Bertini, Riccardo; Ceccanti, Matteo; Torre, Iacopo; Jorissen, Bert; Reserbat-Plantey, Antoine; Watanabe, Kenji; Taniguchi, Takashi; Covaci, Lucian; Milosevic, Milorad V.; Falko, Vladimir; Jarillo-Herrero, Pablo; Krishna Kumar, Roshan; Koppens, Frank H. L.
署名单位:
Barcelona Institute of Science & Technology; Universitat Politecnica de Catalunya; Institut de Ciencies Fotoniques (ICFO); University of Manchester; University of Antwerp; University of Antwerp; Massachusetts Institute of Technology (MIT); Universitat Politecnica de Catalunya; Universite Cote d'Azur; Centre National de la Recherche Scientifique (CNRS); National Institute for Materials Science; National Institute for Materials Science; Barcelona Institute of Science & Technology; Catalan Institute of Nanoscience & Nanotechnology (ICN2); Consejo Superior de Investigaciones Cientificas (CSIC); Barcelona Institute of Science & Technology; ICREA
刊物名称:
SCIENCE
ISSN/ISSBN:
0036-8657
DOI:
10.1126/science.adu5329
发表日期:
2025-08-07
页码:
644-649
关键词:
graphene superconductivity BEHAVIOR
摘要:
Detecting individual light quanta is essential for quantum information, space exploration, advanced machine vision, and fundamental science. In this work, we introduce a single-photon detection mechanism using highly photosensitive nonequilibrium electron phases in moir & eacute; materials. Using tunable bands in bilayer graphene/hexagonal boron nitride superlattices, we engineer negative differential conductance and a sensitive bistable state capable of detecting single photons. Operating in this regime, we demonstrate single-photon counting at mid-infrared (11.3 micrometers) and visible wavelengths (675 nanometers) and temperatures up to 25 kelvin. This detector offers prospects for broadband, high-temperature quantum technologies with complementary metal-oxide semiconductor compatibility and seamless integration into photonic-integrated circuits. Our analysis suggests that the underlying mechanism originates from superlattice-induced negative differential velocity.