Imaging shapes of atomic nuclei in high-energy nuclear collisions
成果类型:
Article
署名作者:
Abdulhamid, M. I.; Aboona, B. E.; Adam, J.; Adams, J. R.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M. M.; Ahammed, Z.; Aitbaev, A.; Alekseev, I.; Alpatov, E.; Aparin, A.; Aslam, S.; Atchison, J.; Averichev, G. S.; Bairathi, V.; Cap, J. G. Ball; Barish, K.; Bhagat, P.; Bhasin, A.; Bhatta, S.; Bhosale, S. R.; Bordyuzhin, I. G.; Brandenburg, J. D.; Brandin, A. V.; Broodo, C.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Cebra, D.; Ceska, J.; Chakaberia, I.; Chan, B. K.; Chang, Z.; Chatterjee, A.; Chen, D.; Chen, J.; Chen, J. H.; Chen, Z.; Cheng, J.; Cheng, Y.; Christie, W.; Chu, X.; Crawford, H. J.; Csanad, M.; Dale-Gau, G.; Das, A.; Dedovich, T. G.; Deppner, I. M.; Derevschikov, A. A.; Dhamija, A.; Dixit, P.; Dong, X.; Drachenberg, J. L.; Duckworth, E.; Dunlop, J. C.; Engelage, J.; Eppley, G.; Esumi, S.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Feng, C. J.; Feng, Y.; Finch, E.; Fisyak, Y.; Flor, F. A.; Fu, C.; Gao, T.; Geurts, F.; Ghimire, N.; Gibson, A.; Gopal, K.; Gou, X.; Grosnick, D.; Gupta, A.; Hamed, A.; Han, Y.; Harasty, M. D.; Harris, J. W.; Harrison-Smith, H.; He, W.; He, X. H.; He, Y.; Hu, C.; Hu, Q.; Hu, Y.; Huang, H.; Huang, H. Z.; Huang, S. L.; Huang, T.; Huang, Y.; Huang, Y.; Humanic, T. J.; Isshiki, M.; Jacobs, W. W.; Jalotra, A.; Jena, C.; Ji, Y.; Jia, J.; Jin, C.; Ju, X.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Keane, D.; Kechechyan, A.; Khanal, A.; Kiselev, A.; Knospe, A. G.; Ko, H. S.; Kochenda, L.; Korobitsin, A. A.; Kraeva, A. Yu.; Kravtsov, P.; Kumar, L.; Labonte, M. C.; Lacey, R.; Landgraf, J. M.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leung, Y. H.; Li, C.; Li, D.; Li, H-S.; Li, H.; Li, W.; Li, X.; Li, Y.; Li, Z.; Liang, X.; Liang, Y.; Lin, T.; Lin, Y.; Liu, C.; Liu, G.; Liu, H.; Liu, L.; Liu, T.; Liu, X.; Liu, Y.; Liu, Z.; Ljubicic, T.; Lomicky, O.; Longacre, R. S.; Loyd, E. M.; Lu, T.; Luo, J.; Luo, X. F.; Luong, V. B.; Ma, L.; Ma, R.; Ma, Y. G.; Magdy, N.; Manikandhan, R.; Margetis, S.; Matonoha, O.; McNamara, G.; Mezhanska, O.; Mi, K.; Minaev, N. G.; Mohanty, B.; Mondal, B.; Mondal, M. M.; Mooney, I.; Morozov, D. A.; Mudrokh, A.; Nagy, M. I.; Nain, A. S.; Nam, J. D.; Nasim, M.; Nedorezov, E.; Neff, D.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Odyniec, G.; Ogawa, A.; Oh, S.; Okorokov, V. A.; Okubo, K.; Page, B. S.; Pal, S.; Pandav, A.; Panday, A.; Panebratsev, Y.; Pani, T.; Parfenov, P.; Paul, A.; Perkins, C.; Pokhrel, B. R.; Posik, M.; Povarov, A.; Protzman, T.; Pruthi, N. K.; Putschke, J.; Qin, Z.; Qiu, H.; Racz, C.; Radhakrishnan, S. K.; Rana, A.; Ray, R. L.; Robertson, C. W.; Rogachevsky, O. V.; Aguilar, M. A. Rosales; Roy, D.; Ruan, L.; Sahoo, A. K.; Sahoo, N. R.; Sako, H.; Salur, S.; Samigullin, E.; Sato, S.; Schaefer, B. C.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, T.; Sharma, M.; Sharma, N.; Sharma, R.; Sharma, S. R.; Sheikh, A. I.; Shen, D.; Shen, D. Y.; Shen, K.; Shi, S. S.; Shi, Y.; Shou, Q. Y.; Si, F.; Singh, J.; Singha, S.; Sinha, P.; Skoby, M. J.; Sohngen, Y.; Song, Y.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Su, Y.; Sun, C.; Sun, X.; Sun, Y.; Surrow, B.; Svirida, D. N.; Sweger, Z. W.; Tamis, A. C.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Thomas, J. H.; Tlusty, D.; Todoroki, T.; Tokarev, M. V.; Trentalange, S.; Tribedy, P.; Tsai, O. D.; Tsang, C. Y.; Tu, Z.; Tyler, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; Vasiliev, A. N.; Verkest, V.; Videbaek, F.; Vokal, S.; Voloshin, S. A.; Wang, G.; Wang, J. S.; Wang, J.; Wang, K.; Wang, X.; Wang, Y.; Wang, Z.; Webb, J. C.; Weidenkaff, P. C.; Westfall, G. D.; Wieman, H.; Wilks, G.; Wissink, S. W.; Wu, J.; Wu, X.; Xi, B.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, G.; Yan, Z.; Yang, C.; Yang, Q.; Yang, S.; Yang, Y.; Ye, Z.; Yi, L.; Yu, Y.; Zha, W.; Zhang, C.; Zhang, D.; Zhang, J.; Zhang, S.; Zhang, W.; Zhang, X.; Zhang, Y.; Zhang, Z. J.; Zhang, Z.; Zhao, F.; Zhao, J.; Zhao, M.; Zhou, S.; Zhou, Y.; Zhu, X.; Zurek, M.; Zyzak, M.
署名单位:
Egyptian Knowledge Bank (EKB); American University Cairo; Texas A&M University System; Texas A&M University College Station; Czech Technical University Prague; University System of Ohio; Ohio State University; Joint Institute for Nuclear Research - Russia; Panjab University; Variable Energy Cyclotron Centre; National Research Centre - Kurchatov Institute; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Indian Institute of Technology (IIT) - Patna; Indian Institute of Technology System (IIT System); Abilene Christian University; Universidad de Tarapaca; University of Houston System; University of Houston; University of California System; University of California Riverside; University of Jammu; State University of New York (SUNY) System; Stony Brook University; Eotvos Lorand University; Chinese Academy of Sciences; Shanghai Institute of Applied Physics, CAS; Yale University; University of California System; University of California Davis; United States Department of Energy (DOE); Lawrence Berkeley National Laboratory; University of California System; University of California Los Angeles; Indiana University System; Indiana University Bloomington; National Institute of Technology (NIT System); National Institute of Technology Durgapur; Shandong University; Fudan University; Tsinghua University; United States Department of Energy (DOE); Brookhaven National Laboratory; University of California System; University of California Berkeley; University of Illinois System; University of Illinois Chicago; University of Illinois Chicago Hospital; Ruprecht Karls University Heidelberg; National Research Centre - Kurchatov Institute; Institute of High Energy Physics - IHEP; Indian Institute of Science Education & Research (IISER) - Berhampur; University System of Ohio; Kent State University; Kent State University Kent; Kent State University Salem; Rice University; University of Tsukuba; University of Kentucky; University of Calabria; National Cheng Kung University; Purdue University System; Purdue University; Connecticut State University System; Southern Connecticut State University; Chinese Academy of Sciences; Institute of Modern Physics, CAS; Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University; Valparaiso University; Indian Institute of Science Education & Research (IISER) - Tirupati; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Central China Normal University; Chinese Academy of Sciences; University of Science & Technology of China, CAS; Wayne State University; Lehigh University; Wuhan University of Science & Technology; Guangxi Normal University; South China Normal University; National Institute of Science Education & Research (NISER); Sejong University; Rutgers University System; Rutgers University New Brunswick; University of Texas System; University of Texas Austin; Max Planck Society; Creighton University; Ball State University; Huzhou University; Michigan State University; United States Department of Energy (DOE); Argonne National Laboratory; Chongqing University
刊物名称:
Nature
ISSN/ISSBN:
0028-6550
DOI:
10.1038/s41586-024-08097-2
发表日期:
2024-11-07
页码:
67-+
关键词:
state
摘要:
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes(1-3), traditionally explored using non-invasive spectroscopic techniques at low energies(4,5). However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors(6,7). We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.