GaAs nano-ridge laser diodes fully fabricated in a 300-mm CMOS pilot line

成果类型:
Article
署名作者:
De Koninck, Yannick; Caer, Charles; Yudistira, Didit; Baryshnikova, Marina; Sar, Huseyin; Hsieh, Ping-Yi; Oezdemir, Cenk Ibrahim; Patra, Saroj Kanta; Kuznetsova, Nadezda; Colucci, Davide; Milenin, Alexey; Yimam, Andualem Ali; Morthier, Geert; Van Thourhout, Dries; Verheyen, Peter; Pantouvaki, Marianna; Kunert, Bernardette; Van Campenhout, Joris
署名单位:
Interuniversity Microelectronics Centre; KU Leuven; Ghent University; Interuniversity Microelectronics Centre; Swiss Center for Electronics & Microtechnology (CSEM); Infinera Corporation
刊物名称:
Nature
ISSN/ISSBN:
0028-2210
DOI:
10.1038/s41586-024-08364-2
发表日期:
2025-01-02
关键词:
quantum-dot lasers selective-area growth low dark current si temperature integration linewidth photonics
摘要:
Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world1, 2, 3, 4, 5-6. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon7, 8, 9, 10, 11-12, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources. Here we report the electrically driven gallium arsenide (GaAs)-based laser diodes fully fabricated on 300-mm Si wafers in a CMOS pilot manufacturing line based on a new integration approach, nano-ridge engineering. GaAs nano-ridge waveguides with embedded p-i-n diodes and InGaAs quantum wells are grown at high quality on a wafer scale. Room-temperature continuous-wave lasing is demonstrated at wavelengths around 1,020 nm in more than 300 devices across a wafer, with threshold currents as low as 5 mA, output powers beyond 1 mW, laser linewidths down to 46 MHz and laser operation up to 55 degrees C. These results illustrate the potential of the III-V/Si nano-ridge engineering concept for the monolithic integration of laser diodes in a Si photonics platform, enabling future cost-sensitive high-volume applications in optical sensing, interconnects and beyond.