Visualizing dynamics of charges and strings in (2+1)D lattice gauge theories

成果类型:
Article
署名作者:
Cochran, T. A.; Jobst, B.; Rosenberg, E.; Lensky, Y. D.; Gyawali, G.; Eassa, N.; Will, M.; Szasz, A.; Abanin, D.; Acharya, R.; Aghababaie Beni, L.; Andersen, T. I.; Ansmann, M.; Arute, F.; Arya, K.; Asfaw, A.; Atalaya, J.; Babbush, R.; Ballard, B.; Bardin, J. C.; Bengtsson, A.; Bilmes, A.; Bourassa, A.; Bovaird, J.; Broughton, M.; Browne, D. A.; Buchea, B.; Buckley, B. B.; Burger, T.; Burkett, B.; Bushnell, N.; Cabrera, A.; Campero, J.; Chang, H. -S.; Chen, Z.; Chiaro, B.; Claes, J.; Cleland, A. Y.; Cogan, J.; Collins, R.; Conner, P.; Courtney, W.; Crook, A. L.; Curtin, B.; Das, S.; Demura, S.; De Lorenzo, L.; Di Paolo, A.; Donohoe, P.; Drozdov, I.; Dunsworth, A.; Eickbusch, A.; Elbag, A. Moshe; Elzouka, M.; Erickson, C.; Ferreira, V. S.; Burgos, L. Flores; Forati, E.; Fowler, A. G.; Foxen, B.; Ganjam, S.; Gasca, R.; Genois, E.; Giang, W.; Gilboa, D.; Gosula, R.; Grajales Dau, A.; Graumann, D.; Greene, A.; Gross, J. A.; Habegger, S.; Hansen, M.; Harrigan, M. P.; Harrington, S. D.; Heu, P.; Higgott, O.; Hilton, J.; Huang, H. -Y.; Huff, A.; Huggins, W.; Jeffrey, E.; Jiang, Z.; Jones, C.; Joshi, C.; Juhas, P.; Kafri, D.; Kang, H.; Karamlou, A. H.; Kechedzhi, K.; Khaire, T.; Khattar, T.; Khezri, M.; Kim, S.; Klimov, P.; Kobrin, B.; Korotkov, A.; Kostritsa, F.; Kreikebaum, J.; Kurilovich, V.; Landhuis, D.; Lange-Dei, T.; Langley, B.; Lau, K. -M.; Ledford, J.; Lee, K.; Lester, B.; Le Guevel, L.; Li, W.; Lill, A. T.; Livingston, W.; Locharla, A.; Lundahl, D.; Lunt, A.; Madhuk, S.; Maloney, A.; Mandra, S.; Martin, L.; Martin, O.; Maxfield, C.; Mcclean, J.; Mcewen, M.; Meeks, S.; Megrant, A.; Miao, K.; Molavi, R.; Molina, S.; Montazeri, S.; Movassagh, R.; Neill, C.; Newman, M.; Nguyen, A.; Nguyen, M.; Ni, C. -H.; Ottosson, K.; Pizzuto, A.; Potter, R.; Pritchard, O.; Quintana, C.; Ramachandran, G.; Reagor, M.; Rhodes, D.; Roberts, G.; Sankaragomathi, K.; Satzinger, K.; Schurkus, H.; Shearn, M.; Shorter, A.; Shutty, N.; Shvarts, V.; Sivak, V.; Small, S.; Smith, W. C.; Springer, S.; Sterling, G.; Suchard, J.; Sztein, A.; Thor, D.; Torunbalci, M.; Vaishnav, A.; Vargas, J.; Vdovichev, S.; Vidal, G.; Vollgraff Heidweiller, C.; Waltman, S.; Wang, S. X.; Ware, B.; White, T.; Wong, K.; Woo, B. W. K.; Xing, C.; Yao, Z. Jamie; Yeh, P.; Ying, B.; Yoo, J.; Yosri, N.; Young, G.; Zalcman, A.; Zhang, Y.; Zhu, N.; Zobrist, N.; Boixo, S.; Kelly, J.; Lucero, E.; Chen, Y.; Smelyanskiy, V.; Neven, H.; Gammon-Smith, A.; Pollmann, F.; Knap, M.; Roushan, P.
署名单位:
Alphabet Inc.; Google Incorporated; Princeton University; Technical University of Munich; Cornell University; Cornell University; Purdue University System; Purdue University; University of Massachusetts System; University of Massachusetts Amherst; University of Connecticut; University of California System; University of California Riverside; University of Nottingham; University of Nottingham
刊物名称:
Nature
ISSN/ISSBN:
0028-2433
DOI:
10.1038/s41586-025-08999-9
发表日期:
2025-06-12
关键词:
roughening transition quantum simulation confinement Invariance
摘要:
Lattice gauge theories (LGTs)1, 2, 3-4 can be used to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials5, 6-7. Studying dynamical properties of emergent phases can be challenging, as it requires solving many-body problems that are generally beyond perturbative limits8, 9-10. Here we investigate the dynamics of local excitations in a Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit that prepares low-energy states that have a large overlap with the ground state; then we create charge excitations with local gates and simulate their quantum dynamics by means of a discretized time evolution. As the electric field coupling constant is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the electric field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT, from which we uncover two distinct regimes inside the confining phase: for weak confinement, the string fluctuates strongly in the transverse direction, whereas for strong confinement, transverse fluctuations are effectively frozen11,12. We also demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a new set of techniques for investigating emergent excitations and string dynamics.