-
作者:Minguez, Alberto; Secherre, Vincent
作者单位:Universite Paris Cite; Sorbonne Universite; Centre National de la Recherche Scientifique (CNRS); Universite Paris Saclay
摘要:Let be a non-Archimedean local field of residual characteristic p, and be a prime number different from p. We consider the local Jacquet-Langlands correspondence between -adic discrete series of and an inner form . We show that it respects the relationship of congruence modulo . More precisely, we show that two integral -adic discrete series of are congruent modulo if and only if the same holds for their Jacquet-Langlands transfers to . We also prove that the Langlands-Jacquet morphism from th...
-
作者:Pilloni, Vincent
作者单位:Ecole Normale Superieure de Lyon (ENS de LYON); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
摘要:Nous montrons un th,orSme de rel,vement modulaire pour des repr,sentations galoisiennes p-adiques de dimension 2, non-ramifi,es en p, des corps totalement r,els peu ramifi,s en p.
-
作者:Damanik, David; Goldstein, Michael; Lukic, Milivoje
作者单位:Rice University; University of Toronto
摘要:We study the quasi-periodic Schrodinger operator -psi ''(x) + V(x)psi(x) = E psi(x), x is an element of R in the regime of small V(x) = Sigma(m is an element of Zv) c(m) exp(2 pi im omega x), omega = (omega(1), ... , omega(v)) is an element of R-v, vertical bar c(m)vertical bar <= epsilon exp(-kappa(0)vertical bar m vertical bar). We show that the set of reflectionless potentials isospectral with V is homeomorphic to a torus. Moreover, we prove that any reflectionless potential Q isospectral w...
-
作者:Atobe, Hiraku; Gan, Wee Teck
作者单位:University of Tokyo; National University of Singapore
摘要:In this paper, we give an explicit determination of the theta lifting for symplectic-orthogonal and unitary dual pairs over a nonarchimedean field F of characteristic 0. We determine when theta lifts of tempered representations are nonzero, and determine the theta lifts in terms of the local Langlands correspondence.
-
作者:Song, Jian; Tian, Gang
作者单位:Rutgers University System; Rutgers University New Brunswick; Peking University; Princeton University
摘要:We prove the existence and uniqueness of the weak Kahler-Ricci flow on projective varieties with log terminal singularities. We also show that the weak Kahler-Ricci flow can be uniquely continued through divisorial contractions and flips if they exist. Finally we propose an analytic version of the minimal model program with Ricci flow.