-
作者:Arone, Gregory; Barthel, Tobias; Heard, Drew; Sanders, Beren
作者单位:Stockholm University; Max Planck Society; Norwegian University of Science & Technology (NTNU); University of California System; University of California Santa Cruz
摘要:We prove a thick subcategory theorem for the category of d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d$\end{document}-excisive functors from finite spectra to spectra. This generalizes the Hopkins-Smith thick subcategory theorem (the d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \us...
-
作者:Kurlberg, Par; Lester, Stephen
作者单位:Royal Institute of Technology; University of London; King's College London
摘要:We show that along a density one subsequence of admissible radii, the nearest neighbor spacing between lattice points on circles is Poissonian.
-
作者:Kuznetsov, Alexander; Shinder, Evgeny
作者单位:Russian Academy of Sciences; Steklov Mathematical Institute of the Russian Academy of Sciences; HSE University (National Research University Higher School of Economics); University of Sheffield; University of Bonn
摘要:Using the technique of categorical absorption of singularities we prove that the nontrivial components of the derived categories of del Pezzo threefolds of degree d is an element of{2,3,4,5}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d \in \{2,3,4,5\}$\end{document} and crepant categorical resolutions of the non...
-
作者:Binda, Federico; Kato, Hiroki; Vezzani, Alberto
作者单位:University of Milan; Universite Paris Saclay
摘要:We give a proof of the p-adic weight-monodromy conjecture for scheme-theoretic complete intersections in projective smooth toric varieties. The strategy is based on Scholze's proof in the l-adic setting, which we adapt using homotopical results developed in the context of rigid analytic motives.