作者:Geiger, D; Heckerman, D
作者单位:Technion Israel Institute of Technology; Microsoft
摘要:We develop simple methods for constructing parameter priors for model choice among directed acyclic graphical (DAG) models. In particular, we introduce several assumptions that permit the construction of parameter priors for a large number of DAG models from a small set of assessments. We then present a method for directly computing the marginal likelihood of every DAG model given a random sample with no missing observations. We apply this methodology to Gaussian DAG models which consist of a ...