SZEGO EXTREMUM PROBLEM ON THE UNIT-CIRCLE
成果类型:
Article
署名作者:
MATE, A; NEVAI, P; TOTIK, V
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.2307/2944352
发表日期:
1991
页码:
433-453
关键词:
orthogonal polynomials
lp
摘要:
It is shown that the Christoffel functions arising from the Szego extremum problem associated with a finite positive Borel measure on the interval [-pi, pi] satisfy [GRAPHICS] whenever mu belongs to the Szego class; that is, log-mu' element-of L1. Some implications of this result are discussed.