A NEW CONSTRUCTION OF SYMPLECTIC-MANIFOLDS
成果类型:
Article
署名作者:
GOMPF, RE
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.2307/2118554
发表日期:
1995
页码:
527-595
关键词:
elliptic-surfaces
general type
4-manifolds
INVARIANTS
TOPOLOGY
Examples
complex
摘要:
In each even dimension greater than or equal to 4, families of compact, symplectic manifolds are constructed, such that all finitely presentable groups occur as fundamental groups. For each group, these manifolds can be assumed not to be homotopy equivalent to Kahler manifolds. Other examples are constructed that are homeomorphic, but not diffeomorphic, to simply connected, Kahler surfaces. The geography of compact, symplectic 4-manifolds is studied, with a result that for any fixed fundamental group, it is possible to realize any value of the first Chern number c(1)(2) or the signature. Explicit results are obtained about simultaneously realizing both Chern numbers (or equivalently, the signature and Euler characteristic), for any fixed fundamental group. Various other applications are presented.