Metal-insulator transition for the almost Mathieu operator

成果类型:
Article
署名作者:
Jitomirskaya, SY
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.2307/121066
发表日期:
1999
页码:
1159-1175
关键词:
periodic schrodinger-operators singular continuous-spectrum tight-binding model ABSOLUTELY CONTINUOUS-SPECTRUM anderson localization jacobi matrices point spectrum equation absence PROOF
摘要:
We prove that for Diophantine omega and almost every theta, the almost Mathieu operator, (H(omega,lambda,theta)Psi)(n) = Psi(n + 1) + Psi(n - 1) + lambda cos 2 pi(wn + theta)Psi(n), exhibits localization for lambda > 2 and purely absolutely continuous spectrum for lambda < 2. This completes the proof of (a correct version of) the Aubry-Andre conjecture.