The bilinear maximal functions map into Lp for 2/3 < p ≤ 1

成果类型:
Article
署名作者:
Lacey, MT
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.2307/121111
发表日期:
2000
页码:
35-57
关键词:
hilbert transform
摘要:
The bilinear maximal operator defined below maps L-p x L-q into L-r provided 1 < p, q < infinity, 1/p + 1/q = 1/r and 2/3 < r less than or equal to 1. Mfg(x) = sup(t>0) 1/2t integral(-t)(t) \f(x + y)g(x - y)\ dy. In particular Mfg is integrable if f and g are square integrable, answering a conjecture posed by Alberto Calderon.