5n Minkowski symmetrizations suffice to arrive at an approximate Euclidean ball

成果类型:
Article
署名作者:
Klartag, B
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.2307/3597288
发表日期:
2002
页码:
947-960
关键词:
摘要:
This paper proves that for every convex body in R-n there exist 5n Minkowski symmetrizations which transform the body into an approximate Euclidean ball. This result complements the sharp cn log n upper estimate by J. Bourgain, J. Lindenstrauss and V.D. Milman, of the number of random Minkowski symmetrizations sufficient for approaching an approximate Euclidean ball.