The best constant for the centered Hardy-Littlewood maximal inequality

成果类型:
Article
署名作者:
Melas, AD
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2003.157.647
发表日期:
2003
页码:
647-688
关键词:
摘要:
We find the exact value of the best possible constant C for the weak-type (1, 1) inequality for the one-dimensional centered Hardy-Littlewood maximal operator. We prove that C is the largest root of the quadratic equation 12C(2) - 22C + 5 = 0 thus obtaining C = 1.5675208.... This is the first time the best constant for one of the fundamental inequalities satisfied by a centered maximal operator is precisely evaluated.