Uniform bounds for the bilinear Hilbert transforms, I
成果类型:
Article
署名作者:
Grafakos, L; Li, XC
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2004.159.889
发表日期:
2004
页码:
889-933
关键词:
operators
摘要:
It is shown that the bilinear Hilbert transforms H-alpha,H-beta(f, g) (x) = p. v. integral(R) f(x - alphat)g(x - betat) dt/t map L-p1(R) x L-p2(R) --> L-p(R) uniformly in the real parameters alpha,beta when 2 < p(1),p(2) < infinity and 1 < p = p(1)p(2)/p(1)+p(2) < 2. Combining this result with the main result in [9], we deduce that the operators H-1,H-alpha map L-2(R) x L-infinity(R) --> L-2(R) uniformly in the real parameter alpha is an element of [0, 1]. This completes a program initiated by A. Calderon.