Proper affine actions and geodesic flows of hyperbolic surfaces
成果类型:
Article
署名作者:
Goldman, William M.; Labourie, Francois; Margulis, Gregory
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2009.170.1051
发表日期:
2009
页码:
1051-1083
关键词:
strong morita equivalence
margulis space-times
discontinuous groups
linear part
transformations
isospectrality
CURVATURE
MANIFOLDS
ALGEBRAS
holonomy
摘要:
Let Gamma(0) subset of O(2, 1) be a Schottky group, and let Sigma = H-2/Gamma(0) be the corresponding hyperbolic surface. Let C(Sigma) denote the space of unit length geodesic currents on Sigma. The cohomology group H-1(Gamma(0), V) parametrizes equivalence classes of affine deformations Gamma(u) of Gamma(0) acting on an irreducible representation V of O(2, 1). We define a continuous biaffine map psi : C(Sigma) x H-1 (Gamma(0), V) -> R which is linear on the vector space H-1 (Gamma(0), V). An affine deformation Gamma(u) acts properly if and only if psi(mu, [u]) not equal 0 for all mu is an element of C(Sigma). Consequently the set of proper affine actions whose linear part is a Schottky group identifies with a bundle of open convex cones in H-1 (Gamma(0), V) over the Fricke-Teichmuller space of Sigma.