The Teichmuller space of pinched negatively curved metrics on a hyperbolic manifold is not contractible
成果类型:
Article
署名作者:
Farrell, F. Thomas; Ontaneda, Pedro
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
发表日期:
2009
页码:
45-65
关键词:
摘要:
For a smooth manifold M we define the Teichmuller space I(M) of all Riemannian metrics on M and the Teichmuller space I-is an element of(M) of epsilon-pinched negatively curved metrics on M, where 0 <= is an element of <= infinity. We prove that if M is hyperbolic, the natural inclusion I-is an element of(M) curved right arrow I(M) is, in general, not homotopically trivial. In particular, I-is an element of(M) is, in general, not contractible.