Perturbations of orthogonal polynomials with periodic recursion coefficients

成果类型:
Article
署名作者:
Damanik, David; Killip, Rowan; Simon, Barry
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2010.171.1931
发表日期:
2010
页码:
1931-2010
关键词:
inverse spectral-analysis c-asterisk-algebras matrix polynomials SUM-RULES SCHRODINGER-OPERATORS relative asymptotics jacobi matrices Partial information rakhmanovs theorem sturm-liouville
摘要:
The results of Denisov-Rakhmanov, Szego-Shohat-Nevai, and Killip-Simon are extended from asymptotically constant orthogonal polynomials on the real line (OPRL) and unit circle (OPUC) to asymptotically periodic OPRL and OPUC. The key tool is a characterization of the isospectral torus that is well adapted to the study of perturbations.