Uniform approximation on manifolds

成果类型:
Article
署名作者:
Izzo, Alexander J.
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2011.174.1.2
发表日期:
2011
页码:
55-73
关键词:
complex manifold holomorphic approximation polynomial-approximation c-n ALGEBRAS submanifolds invariant THEOREMS
摘要:
It is shown that if A is a uniform algebra generated by a family (13 of complex-valued C-1 functions on a compact C-1 manifold-with-boundary M, the maximal ideal space of A is M, and E is the set of points where the differentials of the functions in Phi fail to span the complexified cotangent space to M, then A contains every continuous function on M that vanishes on E. This answers a 45-year-old question of Michael Freeman who proved the special case in which the manifold M is two-dimensional. More general forms of the theorem are also established. The results presented strengthen results due to several mathematicians.